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Abstract. The millions of web pages populating the internet seem to
be unstructured and chaotic, but there are implicit semantic relations
between them. In this paper we propose to make explicit the underlying
semantic structure of the internet, by measuring joint keyword occur-
rences in web pages, around our notion of “Semantic Contexts”. As a
result, we can draw a “map” of semantic clusters which can be used as a
reference for situating individual web pages in a complex semantic space.
Further, the methods we propose could be used for disambiguating and
refining web search queries, for refining translations, for spam filtering,
and in general for semantic-enabling many internet applications.

1 Introduction

Internet is acknowledged as one of the big technological revolutions of our time;
since its inception in the early 90s, the WWW has grown exponentially, reaching
some 74.5 millions of websites with at least 11.5 billions indexed at the main web
searchers [1]. Nevertheless, web pages normally have the limitation of not taking
into account the meaning or the context of the included information content,
but just its formatting. HTML tags indicate that a certain text is a title, or a
series of items, but not what the document is about. In words of T. Berners-
Lee, “Most of the Webs content today is designed for humans to read, not for
computer programs to manipulate meaningfully” [2]. This is indeed a serious
limitation; for instance, one very important issue is to determine what a given
web page is about. The lack of an efficient semantic categorization undermines
many internet applications, in particular web searches. Indeed, every internet
user is confronted with the inconvenience of receiving from the search engines
many irrelevant pages, due to the inability of search engines to contextualize
keywords in meaningful concepts, areas, themes, etc.

Initiatives aiming to represent in web pages meaning, have been generically
called “Semantic Web” [2] The Semantic Web initiative proposes markup lan-
guages, mainly based on XML [3], and develops technologies for defining and
using concepts and relations among them in the so-called “ontologies”.

Nevertheless, there has been problems for widely adopting semantic web.
Some of the reasons are technical challenges, and other are practical issues. So
we are turning our attention to quantitative approximate methods (sometimes
called “soft” [4]) for characterizing internet semantic relations. In particular,
we proposed to exploit the joint frequencies of keywords as representative of
semantic closeness in the existing internet, not in an ideal or futuristic internet.
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We propose in this paper a keyword-based quantitative semantic infrastruc-
ture that could make explicit an underlying internet semantic structure, as a
collection of interrelated “Semantic Contexts”, which constitute a sort of in-

ternet semantic “topography”. The Semantic Contexts are a stable reference
¢ web pages or queries could be situated. In this paper we

against which specifi
in particular how

also present some practical applications of Semantic Contexts,

to better focus web searches.
After this introduction, in the next section we give a technical presentation

of our method, followed by some experimental results, then by a representative
application, and then a comparison with related work, to end with a conclusion.

2 Our proposal

The basis of our approach is to make a semantic interpretation of joint keyword
frequency. Central to our approach is the notion of “Semantic Contexts” (SC),
which intuitively represent conceptual areas, around which a family of keywords
ently inside web pages. For instance, around a concept of “Tourism”

appears frequ
keywords like hotels, reservations, flights, etc., which appear

there will be many
together in many web pages.
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Fig. 1. Semantic Contexts related to “palm”

SC are defined formally in the next section, but let us first introduce a mo-
tivating example. Imagine the following scenario: a user is trying to find infor-
mation about how to display pictures on a handheld device, so he/she issues the
search query palm pictures. In a standard search service, like Google [5], this
query would throw to the user answers about topics like: display of pictures on
a handheld device, pictures of a place in California, pictures of an unbranched
evergreen tree, etc. In a semantically-enhanced version of web search, the sys-

tem would consult a base of indexed semantic clusters and would offer the user
the following options: Search for palm pictures related to: 1) pda, software, 2)
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California, beach, or 3) tree, leaf. Once the users would select one of these op-
tions, only pages of the corresponding interpretation of the word palm would

be returned to the user. This, of course, would be of enormous utility to users,
because search results would be much more focused.

2.1 Semantic Contexts

We see SCs as sets of interrelated keywords that appear together in a number
of pages. We can visualize SC intuitively as “clouds” in a space of semantic
closeness. like depicted in figure 1, for the “palm” example we just presented.

In order to formalize the notion of SCs, we consider the relative weights w; of
keywords k; as a measure of how important these keywords are in a given topic.
For instance, when we are talking about coffee, other related words like “sugar”
or “roasted” have a high weight. We assume weights are normalized to be in the
range 0 < w; < 1. Given a set K of n keywords, we define a SC as a function
o : K — [0,1]. As a SC represents a “topic”, “subject” or “theme”, important
words in that theme have higher weights. We could also imagine SC as vectors
W1, W2, . .., Wn Of weights for keywords k, ks, ..., k,.

Distances between SC can be readily calculated. First, we define SC similarity
using a standard internal product formula [6]. Assume the vector wy, ws, ..., wy
of weights for keywords ki, ks, ..., k, in a given semantic context SC is written
as w. Then, we can take the internal product of vectors as a similarity measure:

" w
sim(SCy, SC;) = ﬁl-:—; (1)

Then, from a similarity measure we could take the cosine inverse to obtain

a difference measure as an angle [6]. Other similar distance metrics could be
readily defined.

Next is the question of how a SC can be calculated. This can be done using
specialized conjunctive queries, which we call “k-cores”.

k-cores Now we introduce the notion of “k-cores” , which are conjunctive queries,
as follows. F'(w), called frequency, will represent in how many corpus pages the
term w apears. By extension, the notation F({w,...,wx}), for sets of k key-
words {wy, ..., wx}, represents the count of web pages where all of {wy,...,wx}
appear together (in the same document). Further, we use F(P{w;,...wx}) which
is the set of frequencies, one for each subset of (P{wy,...w;}.

Then we define the “force” f of a keyword set {wy,..., wy } as follows, where
¢ is a suitable constant, like 10'2; function g is explained below:

_ F({wy,...,w})
P 0D = D G, - we) =

and g is a function of joint frequencies of subsets of {wy,...,wx}. One such
function is the “disjoint frequency”, which is the quantity of pages where a
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given set of keywords (in this case {wy,...,wy}) does not appear together, but
some of wj, - - -, Wk does appear.

Now we define “k-cores” as sets of k keywords of maximal force, meaning
just one of its keywords by any other available word will decrease
as local maxima in a space of sets of keywords.

This naturally suggests hill-climbing [7] as a method for finding them.
Depending on the application, the size k of k-cores could take different values.
Of course, any value smaller than 2 does not make any sense, and even a value of 2

will normally be too small to represent a meaningful theme. In our experiments
of k = 4. Choosing the “right” value of k is an open

we use mostly a value
have been rather pragmatic on this issue, generally

question right now, and we
f 4, with which the experiments gave meaningful results (see

taking a value O
future work at the end of this paper).
ponent of our method. They are conjunctive queries

k-cores are a key com
bject. Once a k-core w is determined, given a certain

that represent a topic or su :
corpus C, the subset 2 of C with documents containing simultaneously all of

the keywords in w, can be readily obtained using web indexing technology [6]-
From {2, keyword weights can be computed using standard tf-idf measures [6],

with a formula like: )
—f idfs
Wz,j = fz,5 X maz; idf; (3)

that replacing
the force. k-cores can be seen

. is the normalized frequency of term k, in document d;, and idf; is

where fz,;
ument frequency for a generic term k;.

the inverse doc
In order to “mine” a set of web pages for finding k-cores, there is a trivial

hill-climbing algorithm, as follows:

Input: A set P of web pages and a number k (for calculating size-k k-cores).

i [
2: output: A set S of k-cores.
3. From P filter a set W of keywords.
4: Sj + @ —The set of k-cores is initially empty.
5: repeat
6: K « arandom subset of W of size k.
7. F« f(K)
8. forallwe W —K do
9: for all wk € K do
10: K' « replace w for wk in K
11: F' — f(K")
12: if F' > F then
13: F—F;K~K
14: end if
15: end for
16: end for

1% Sk L Sk U K

18: until k-cores are “stable”

. The condition at the end of the repeat loop means that there are no changes
in the set of current k-cores, meaning that this set is a fixpoint of the algorithm.
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In practice, for efficiency reasons, this condition could be replaced (and actually
has been replaced in our experiments) by a fixed number of iterations.

In order to assess the complexity of an algorithm we can evaluate first the
inner loops. From the first for loop, the call to f function in the inner loop
(which is normally the most costly operation) will be executed |W — K|k times,
and considering that k is kept constant and that |W — K| is basically |W|, we can
see that this algorithm is linear in the keyword set size |W|. This result stands

of course if the outer loop is replaced by a fixed number of iterations, like we do
in the experiments presented below.

We have introduced a small optimization to this algorithm: instead of starting
with random cores, we select “promising” cores obtained in the following way:

1: From a random page p in the corpus we obtain the k most relevant terms
using a TF-IDF measure [6, 8]

2: The starting k-core is the set of those k terms.

Mining a corpus for k-cores can be seen as locating the “topics” to which
documents belong at least partially. We view the set of k-cores as the summits
in a semantic topography, where altitude is calculated by the “force”, given by
equation 2. k-core calculation could be a computationally costly process, but it
would be done offline in servers, so it does not affect the performance with respect
to user queries, which we present in the following section. In the experiments
section we show an example of k-cores calculation in a controlled environment.

3 Experiments

In order to validate the ideas presented above, we setup an experimental frame-
work described in the following,.

We installed an indexer and web searcher (Apache Lucene, [9]), and gather
a small collection of 1168 web pages in the following topics: investments, java
development, architecture, music, middle ages history and travel and tourism.

In order to provide an objective basis for classifying pages in topics, we
used the Google and Yahoo directories, and using the APIs of these services for
automatic downloads, avoiding in this way to introduce an involuntary bias. Of
course, the Google and Yahoo directories were made by humans as well, but at
least they were made by many people, and not including ourselves.

Then we ran the indexer in order to enable web searching inside our controlled
set of web pages. The indexer created the index file and a table of keyword
frequencies. We had a set of 50,025 words. In order to consider only meaningful
keywords, we performed an automated filtering of “stop-words” (meaningless
words, like “above”, “etc”, etc). 12,745 terms were filtered out, which is about
a quarter of the total, leaving 37,280 keywords.

The next step was removing variants of the same words, like run, running, etc;
this process is known as “stemming” [10]. In our prototype we used a stemming
algorithm provided by the “Snowball” implementation of [11], which is not part
of this research. We also added a database of similar words like “built” and
“build” that were not caught by the Snowball system, so when the replacement
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algorithm find a word similar to one in the current core, only is replaced if it is
the word we are currently replacing, and the force is increased, otherwise it is
discarded and we continue with the algorithm as presented in section 2.1.

Even in a small document sample like the one we have, with just over 1000
pages, the quantity of possible cores of a size 4 or 5 is quite impressive: there
are 80,467,864,076,000,270 combinations of 37,280 words taken in groups of 4.
This is the number of possible 4-cores, which of course excludes any brute-force

algorithm for finding the best cores.
Actually, most of the cores have a force of exactly 0, because the numerator
of the force formula 2 is the number of pages simultaneously having all of the
considered keywords in it. The space of all possible cores contains a few (com-
paratively) sparse non-zero cores. In previous papers [12] we have found that the
proportion of non-zero-force cores is about 0.018 percent. Taking into account
this huge proportion of zero-force cores we can see that any refinement which
avoid considering 0-force candidates would be a great improvement. We are us-
ing TF-IDF measures [8] of keyword relevance for selecting the best candidates,
as we pointed out before. Consider that any word participating in a 4-core would
necessarily be in some 2-cores (that is, sets of 2 words). For instance, two words
appearing each in just 10 pages have a probability of appearing together in a
given page of 7 X 1078, so it could be discarded. In our implementation we are
forming initial cores (“seeds”) by first selecting randomly one page in the corpus,
and then selecting the 4 highest-valued words taking an TF-IDF measure. For
instance, the most relevant words of a randomly selected web page, which was
about japanese architecture, were shinden, domestic, zukuri, and architecture.

We take this as a “seed” for the hill-climbing algorithm.

For the experiments of this paper, we implemented a variation of the algo-
rithm in section 2.1, implemented in a "horizontal” way, meaning that we first
calculated a single round of force increment, from initial seeds, and then calcu-
Jated the second round from current cores, and so on. instead of going all the
way to the maximum from initial seeds. This experiment is exhaustive for the
small corpus we took, because initial seeds were calculated for every single page
in the collection of over 1000 pages. In figure 2 we present the way the force
of cores gets incremented from 2 rounds up to 6 rounds. We can see there that
from 4 rounds-on variation is minimal, meaning that in practice there is no point
repeating the “repeat” loop of algorithm in section 2.1 more than 4 times.

To illustrate the process, in the following table we present results from the
“horizontal” hill-climbing algorithm, showing how many pages in the corpus,
which produced corresponding initial seeds, are “concentrated” in the same 4-
core. This means that some cores get frequently “merged” into the same core,
resulting in gradually fewer and fewer cores as the algorithm proceeds.

As we can see in this table, for example the seed “architecture, building,

design, house”, which initially had just one page, then received the contribution
of other cores that ended becoming identical to it by word substitution (see the

algorithm), and had 52, 62 and finally 64 pages represented by it.
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Core rmd 2|mnd 3|rnd 4|rnd 5|rnd 6|Size var
{architecture,building,design,house} 1 52 62| 64 64 63
hotels,paris,rooms,rue 57 83 91 92 92 35
fages,life,middle,people}i 59 88 90 90 90 31
{buffett,chairman,letter,warren} 6| 25| 25| 25| 25 19
{calderon,omar,reggaeton,tego} 171 22| 22| 22| 22 5
{ages,feudal,middle,religion} 28 31| 311 31| 31 3
{band,blues,dance,jazz} 15 18 19 19 19 4
{application,code,developers,java} 5 9] 12 12 12 r §
{investors,premium,shares,stock} 0 6 9 9 9 9
{attractions,hotels,tourism, travel } 3 8 9 9 9 6
{berkshire,buffett,chairman,warren} 2 8 8 8 8 6
{cheap,hotel,reviews,star} 100 12| 12| 12| 12 2
{artist,blues,jazz,pop} 1 5 5 5 5 4
{maze,mazes,pyramids,sphinx} 2 0 0 0 0 -2
{architectural,design,house,style} 2 0 0 0 0 -2
{ages,medieval,middle,weapons} 2 0 0 0 0 -2
{building,gate,great,middle} 2 0 0 0 0 -2

In the lower part of the table (below the horizontal line) we have some ex-
amples of cores which lost pages in the process, giving them away to stronger
cores. These can be considered as meaningless word combinations in the corpus.
The dotted last row represents the remaining 28 initial seeds of the experiment.
Above the horizontal line we have all the 13 cores that ended with a positive
size variation, which could be considered as the possible topics of the corpus.

Table 1. Cores found in our corpus

Topic Cores
Investments|buffett,chairman,letter,warren
investors,premium,shares,stock
berkshire,buffett,chairman,warren
Programming|application,code,developers,java

Travel|hotels,paris,rooms,rue
attractions,hotels,tourism,travel
cheap,hotel,reviews,star
Music|calderon,omar,reggaeton,tego
band,blues,dance,jazz
artist,blues,jazz,pop

Architecture|architecture,building,design,house
Middle-ages history|ages,life,middle,people
ages,feudal,middle,religion
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Fig. 2. Evolution of best core force through several rounds

Because we know in advance the topic of every page in the corpus, we can
manually classify the 4-cores with positive variation into the 5 topics of the
corpus, to see how the former represent the latter. This is done in table 3. From

this table we can see that all of the 5 topics got represented by at least one 4-core.
This is an important experimental result, because with it we showed that the

method was able to find all the relevant topics of the corpus.

Nevertheless, some of the topics were represented by more than one 4-core.
We believe that some of the cores are actually representative of a subtopic, like
for instance “calderon, omar, reggaeton, tego”, which is a subtopic of music.
In order to test this hypothesis, we calculated the distances between all of the
13 SCs found, to see whether distances between semantically-related SCs were
indeed smaller than distances between unrelated SCs. This is done in figure 3.

For this experiment we executed each of the cores as queries to the index, and
then generated a weight vector using the resulting documents for each of the 13
selected cores, The weight of each term is its relative frequency in the result set.
Then, the weight vector is unit-normalized so that vector distance metrics can be
applied to each of the vectors in the set. As we can see in figure 2, k-cores in the
same topic, like “buffett, chairman, letter, warren”, “investors, premium, shares,
stock” and “berkshire, buffett, chairman, warren” (all about the “investments”
topic) are strikingly close to each other. The same could be said about same-
topic k-cores in the other topics. Take, for instance the music-related k-cores:
“band, blues, dance, jazz” is very close to “artist, blues, jazz,pop”, and even
“calderon, omar, reggaeton, tego”, which does not share a single keyword with
the other two k-cores, appears as semantically close in the figure. This validates

the hypothesis that k-cores refer to subtopics of a general theme.
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4 Application of SC to internet search

Now let us assume a set of web pages has already been mined for its k-cores,
which will be considered each a representative of a SC. We will show how this
structure could be used in order to guide an internet search.

The relevance of a keyword set or query @ to a given SC with k-core K and
weights wg, written as R(SC;, Q) is defined as the average weight wi of the
words k € Q in the SC;.

The next step in SC-guided search is to calculate the relevance of Q with
respect to the available SCs SC;...SC,,. We order the SC X; in descending
order of relevance, and we take the first m relevant SC, where m is a small
number like 2 or 3. These first m SC will be considered as the closest to the user
query, and the associated k-cores will be presented to the user to choose from
like in the introductory example.

Once the user selects one of the proposed k-cores, say Kj;, the system will
propose to him the result of queries QU{k;, k;, . ..}, where k;, k;, . . . are members
of the selected k-core. This means that user queries can be enriched with words
from the core, so that the search is narrowed. Notice that this will have a more
restricted result than the original search Q, which is the intended effect.

Resuming, the algorithm for a SC-guided search is as follows (we assume that
all k-cores satisfying a force threshold have already been calculated):

Input: A set SC; of SC and a query Q.

output: Results from an enriched query.

Calculate the relevances R(SC;, Q) to SC, which are X;.

Construct a list L of SC with decreasing relevance to the query.

Present to the user the m first k-cores from the SC in L.

: The user selects one of the k-cores of the preceding step, let it be K. g5

: New queries of the form QU {k;, k;, ...}, where k;, k;, ... are members of Kj;,
are constructed.

The user receives the result of the enriched queries.
Our experiments about SC-enhanced search are reported elsewhere [12].

~ -

@

5 Related work

As we mention in the introduction, there are a number of quantitative corpus-
based approaches to analyze texts [13,14], but none of them offers, as we do, a
perspective of semantically structuring the web space; the cited works belong to
the Natural Language Processing field.

In the field of Information Retrieval some works propose to extend search
engines functionalities [15], by different means than the ones proposed in our
paper, like “retrieving any type of data and collecting information to do bet-
ter web mining”, and other improvements like dealing with multimedia data.
The cited author does mention the use of “Soft Computing” methods [16], but
without proposing a specific approach or application.
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Fig. 8. Distances between SCs

In [17] quantitative information-theoretic measures of Semantic Similarity
are explored using a tree-based notion of semantic similarity. Our work does not
rely on graph comparison, but entirely on joint frequency measures, which are
efficiently calculated by web search engines.

Some other works [18-20] propose clustering methods for sets of documents.
For instance, in [21] “chat” sessions are put in relation to possible contexts
using the web as a reference corpus; the author uses a clustering algorithm to
identify candidate contexts. In his approach, a web search is done first, and
clustering is applied to the search results. Our approach is not to directly cluster
document sets, or search results like [21] or the Clusty search and clustering
engine [22], but instead to first mine a corpus, that could be a document set
or the whole internet, for Semantic Contexts, represented by their k-cores, and
only then, match documents or queries against the k-cores; this last step is done
efficiently using algorithms very similar to those used by search engines, which
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were described in section 4. One advantage of doing so is that our k-cores are
static, that is, they do not change from query to query, but only through years
of internet evolution, and thus they can be calculated off-line, that is, prior to
user querying, reducing this way the user waiting time.

A work in NLP similar in ideas to our work is [23], where the author presents a
vector representation of keyword occurrences together. Topics are represented by
the centroid of a set of vectors in a multidimensional space. There are complexity
issues though, as the author declares: “a global optimization of cooccurrence
constraints is necessary, an operation so complex that only a supercomputer can
perform it”. Our reliance on web search technology, in contrast, gives us, we
think, better chances to scale up to the whole internet.

6 Conclusion

As we show in this paper, part of the underlying semantic structure of the web
could be made explicit by means of our “Semantic Contexts”, represented each
by corresponding keyword weights and “k-cores”. We have presented the notion
of Semantic Context as “clouds” in a keyword space, we have formally defined
them as weighting functions over keywords, and we have shown how they can
be calculated. Further, the experiments we present show that it is possible to
produce automatically k-cores representing all of the topics in the given corpus.
As we are able to define distances over SC, we see the collection of SC in a corpus
like a “map” of its semantic concentration points, or as a semantic “topography”,
with summits associated to cores with maximal force.

As a practical application of Semantic Contexts, search engines utility could
be improved, using semantic contexts as a guidance. We think SC could be
applied to automatic “tagging”, to natural language translation, and in general
to serve as an objective semantic reference that could make semantic-aware many
internet applications.

To the best of our knowledge, our work, proposing the explicit construction
of a static interrelated collection of semantic themes representative structures
(Semantic Contexts and their k-cores), and their application for refining searches,
is completely original.

Our future work includes a larger scale validation, the refinement of the
algorithms to ensure scalability, the investigation of the effect of adjusting the

k size of k-cores, as well as developing practical applications like the search
refinement.

Acknowledgement: This work was supported by the CAT-011 Monterrey
Tech’s research chair.
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